

The 'Other' Earth Explorers

Explorer opportunities for the UK?

Rob Scott

CoReH₂O

Cold Regions Hydrology high-resolution Observatory

- Snow cover dominates the Earth's cryosphere, therefore understanding of the global water cycle demands accurate, high-resolution observations of freshwater stored as snow.
- CoReH2O will make measurements in support of:
 - Quantification of the role of snow and glaciers in influencing the global water cycle and regional water resources.
 - Parameterisation and downscaling of snow and ice processes in atmospheric circulation and climate models.
 - Quantification of the effects of snow regimes on boundary conditions for carbon exchange, trace-gas exchange and preservation of biodiversity.
 - Processes in high-latitude ocean circulation and thermodynamics related to sea-ice formation and freshwater fluxes from high-latitude rivers.
 - Improved representation of hydrological processes in NWP models

CoReH₂O Principle

- CoReH₂O is a wide-swath, high resolution SAR mission, using dual-band, dual-polarisation measurements. This allows:
 - Observation of extent and water equivalent of seasonal snowcover and winter snow-accumulation on glaciers.
 - Observation of ice type (with the emphasis on thin ice) and snow depth on sea ice and freshwater ice.
- SAR operates in Ku and X band, with VV-VH polarisations, over a 100km swath width
- Ku-band (17.2 GHz) is a first for space SAR
- Complementary to and synergistic with C-band SAR on SENTINEL-1
- Will support measurements of altimeters such as Cryosat II and SENTINEL-3

CoReH₂O Interactions (1)

- Total backscatter σ^t from snow covered surfaces is made up of contributions from:
 - Air-snow (small for dry snow)
 - Direct volume (significant)
 - Ground/Volume & Volume/ Ground (small)
 - Direct Ground (significant)
- The snow water equivalent is derived mainly from the volume scattering.
- Note that dry snow is relatively transparent at C-band (5.3GHz), and so only the snow/substrate interface contributes

$$\sigma_{pq}^t = \sigma_{pq}^{as} + \sigma_{pq}^{\nu} + \sigma_{pq}^{g\nu} + \sigma_{pq}^{g'}$$

CoReH₂O Interactions (2)

CoReH₂O mission

- 2 mission Phases envisaged:
 - Phase 1 (2 years): 3-day repeat (~666 km)
 - Phase 2 (year 3 onwards): 15-day repeat)~645km)
 - SAR operates in ScanSAR mode (5 or 6 sub-swaths)

Parameter	Requirement	
SAR frequency	9.6 GHz and 17.2 GHz bands	
Polarisations	VV and VH	
Incidence angle (at horizontal surface)	30-45° (swath within this range)	
Spatial resolution	≤50 m × 50 m (≥4 equivalent number of looks)	
Swath width	≥100 km	
Noise equivalent σ^0	X-band: \leq -23 dB for VV; \leq -27 dB for VH Ku-band: \leq -20 dB for VV; \leq -25 dB for VH	
Radiometric stability	≤0.5 dB	
Absolute radiometric bias	≤1.0 dB	
Dynamic range	≥30 dB	
Total ambiguity ratio	≤-20 dB	

CoReH₂O Spacecraft Concepts

Centre for Instrumentation

FLEX – Fluorescence Explorer

- FLEX is a mission to map chlorophyll fluorescence of vegetation from orbit.
 - Used to make quantitative estimates of photosynthesis
 - Will provide an indicator of carbon storage in vegetation, and give insights into the carbon and water cycles.
- FLEX in Explorer 8 is an evolution of the mission studied at Phase 0 in EE7, and features a smaller spacecraft flying in tandem with Sentinel-3.
- FLEX is now in parallel competitive Phase A study, and so up-to-date designs are under wraps at present. We may expect further evolution from information presented today.
- Some details of a scientific study to identify optimal retrieval schemes are available from the University of Valencia. See: http://ipl.uv.es/flex-parcs/
- A single payload: FLuORescence Imaging Spectrometer (FLORIS - formerly FIMAS) - a VIS-NIR instrument (500-800 nm).
- Mission will use co-registered data from 2 instruments on Sentinel-3 which will fly in tandem with a few seconds separation:
 - Sea and Land Surface Temperature Radiometer SLSTR
 - Ocean and Land Colour Instrument OLCI

Image: ESA & University of Valencia

FLEX – Principle (1)

- Chlorophyll fluorescence is a close proxy for vegetation physiology.
- A very small component of sunlight returned from foliage is due to chlorophyll fluorescence in the red and far-red spectral regions.
- In parts of the solar spectrum where light is attenuated by absorption, and which overlap the fluorescence features, the fluorescence signal can be separated.
- The O₂-A and O₂-B atmospheric absorption features and Fraunhofer lines can be used to separate the fluorescence signal, provided effects are strong enough at the top of atmosphere.

Image: University of Valencia

Image: University of Valencia

Principle (2)

 Red edge and photochemical reflectance index (PRI) bands are also recorded.

Band	Range	Resolution
O ₂ -A	750-777 nm	0.1 nm
Red edge	714-750 nm	0.5 to 2 nm
O ₂ -B	660-714 nm	0.1 nm
PRI	520-660 nm	0.5 to 2 nm

- Slope of red edge is related to Leaf Area Index
- Position of red edge is related to chlorophyll content
- PRI gives handle on xanthophyll and hence carbon uptake

Early Instrument concepts

Mission

- FLORIS uses the push-broom technique with a swath of 100-150km (within the swaths of the Sentinel-3 instruments)
- Pixel size is 0.3 x 0.3 km²
- Co-registered OLCI and the SLSTR data are needed in support of fluorescence measurement and cross-calibration.

Centre for

NB All missions subject to competition and down selection.

PREMIER

- STEAM-R STFC RAL & Astrium aspire to provision of SSB Mixer technology as UK contribution to the Swedish STEAM-R mm-wave imaging limb sounder instrument
- Science interest STFC RAL

BIOMASS

- Astrium UK Phase A study lead + aspiration for P-Band SAR
- Science interest at U of Sheffield and U of Edinburgh
- SEA aspire to end to end calibration, inc effects of ionosphere.

CarbonSat

- SSTL is involved in instrument design in one of the study consortia
- Science Interest U of Leicester

CoReH2O UK Interest

- Astrium aspire to SAR electronics etc
- COM DEV Europe aspire to provide several 1:8 switch matrix feeds at X and Ku-band
- The also aspire to supply of high peak and CW power handling subsystems using ferrite-based latching circulators and phase-shifter switches
- SEA aspire to end to end calibration, inc effects of ionosphere.

FLEX UK Interest:

- SSTL is involved in instrument design in one of the study consortia
- Oxford University involved in the science

UK in the ESA Explorer programme

- Unless one is already embedded in the EE7,8 consortia, it will now be difficult to secure a major instrument role.
 - However UK SMEs and other interested organisations are encouraged to contact the mission consortia, as there are likely to be subsystem and equipment roles – subject to geo-return issues!
 - Keep an eye on the politics! Opportunities can become available unexpectedly as a result of changes in the international funding landscape.
- For the future, ESA have commented that Explorer proposals from the UK still lack maturity in some areas, namely:
 - TRL level of technologies
 - Maturity of cost models
 - Maturity of systems engineering
- For Explorer 9 & 10 and EE-X etc., CEOI may be able to help.
- Schedule for 9, 10 and EE-X etc. is dependent on EOEP-4 outcome at the Ministerial in November.

CEOI support (1)

- CEOI can provide:
 - Funds for proposition/proposal development;
 - See current CEOI open call aimed at small studies (capped at £30k each) for new mission concepts, instruments, and technologies. Closing date noon on 28th September 2012. Still time, but hurry! www.ceoi.ac.uk
 - Competitive bids normally for seedcorn activities up to £50k.
 - Funds for instrument development and TRL raising
 - Competitive bids for seedcorn (£50k) and mainstream instrument technology development (£50 to ~£250k)
 - Note that the existence of a real and credible flight opportunity is a key success criterion for a CEOI 'mainstream' bid.

CEOI Support (2)

- In addition, CEOI may be able to provide:
 - Seminars to discuss preparation of bids for Earth Explorers, perhaps exploiting experiences from past successful consortium members, or those with insight into ESA's processes;
 - Proposal 'flight-checks' in collaboration with UKSA.
- Discussions are taking place as to how these services might be provided.